
• What is the Injection Energy Associated
with Shock Acceleration?

• Does it depend on Shock-Normal Angle?

• What is the Acceleration Rate?

SHINE, Big Sky, MT, June 2004



Simplified Shock Geometry
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In order for particles to be accelerated by the shock – efficiently – they

must remain near the shock.

In the ABSENCE of scattering, particles can remain ahead of the

shock only if their speed, w is such that

w > V1 sec θBn

where V1 is the shock speed.

This implies a STRONG dependence on θBn



BUT IS THIS A GOOD APPROXIMATION?



AMBIENT FLUCTUATIONS

The coherence scale of the interplanetary magnetic field is about
0.01 AU (determined from power spectra)

Jokipii & Coleman, 1968



A picture of the fields & flow near a shock at 1 AU
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The Limit of Diffusive Shock Acceleration

Diffusive shock-acceleration theory is valid if the anisotropy is small.

The general expression is:
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The Limit of Diffusive Shock Acceleration (cont.)

Case 1. Parallel shock (θBn → 0)
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Case 2. Perpendicular Shock (θBn → 90)
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The Limit of Diffusive Shock Acceleration (cont.)

Classical-scattering theory gives

κA

κ⊥
=

λ‖

rg
� 1 (for most astrophysical applications)

Thus, the classical-scattering theory predicts

winj � 3U1(λ‖/rg)



The Limit of Diffusive Shock Acceleration (cont.)

Classical-scattering theory gives

κA

κ⊥
=

λ‖

rg
� 1 (for most astrophysical applications)

Thus, the classical-scattering theory predicts

winj � 3U1(λ‖/rg)

HOWEVER, classical-scattering theory is NOT a good approximation

for perpendicular transport!



Test-particle simulations using synthesized magnetic turbulence

(Giacalone and Jokipii, ApJ, 1999 + one extra point)
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For a perpendicular shock, the injection velocity is given by

winj = 3U1

[
1 +

(κA

κ⊥

)2]1
2

≈ 3U1

⇒ The SAME as for a parallel shock.



The Physics of self-excited waves is also affected by large-scale
fluctuations – the time scale for wave growth and upstream
scale length depend on the local geometry.
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We wish to study particle acceleration and transport near a shock

without invoking diffusive transport

In order to do this, we need to synthesize the turbulent fields.

There are two obvious ways to proceed:

1. Turbulent (“rippled”) shock + magnetic field

turns out to be difficult

2. Planar (or spherical) shock + turbulent magnetic field



Modeling a shock moving through a turbulent medium
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Model Geometry
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Model Fields
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Model Results
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Model Results
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Model Results

at 10 R�, 50,000 Ω−1
p ≈ 6 minutes
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Model Results
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CAN SHOCK ACCELERATION THEORY EXPLAIN THOSE

EVENTS IN WHICH FE/O INCREASES WITH ENERGY?



CAN SHOCK ACCELERATION THEORY EXPLAIN THOSE

EVENTS IN WHICH FE/O INCREASES WITH ENERGY?

POSSIBLY YES – USING COMPRESSION ACCELERATION



Consider a gradual plasma compression – NOT A SHOCK (e.g. CIRs

at 1AU)

U1

U2∆

∆  >>      ωc / i



Acceleration of Fe and O at a gradual compression (three different

charge states are considered)
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Conclusions

1. For the case of strong IMF fluctuations (∆B2 ∼ B) with a

coherence scale of 0.01 AU, the injection velocity for shock acceleration

is WEAKLY dependent on shock-normal angle.

2. Perpendicular shocks are more rapid accelerators of charged

particles than parallel shocks – although the acceleration rate at a

parallel shock is higher than expected from simple classical scattering

theory.

3. Unusual enhancements of Fe/O may be due to acceleration at

compression regions.


